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Robust design in discrete design space is defined as a discrete design that is insensitive to external uncertainties or
variations. The application of robust discrete design is not prevalent yet due to high computational cost. A relatively
simple method is proposed to select discrete and robust optimum. At first, the discrete design is achieved as the
postprocess of conventional optimization. An orthogonal array is established around a conventional optimum, and
the characteristic functions are evaluated. The characteristic function is defined by considering the robustness of the
objective and constraints. The parameter design of the Taguchi method is introduced to obtain the robust solution
in discrete space. The present method has insensitive performance to variations of the design variables within the
selected discrete values enhancing the feasibility of constraints. To enhance feasibility, ranking the estimators of the
characteristic function is developed. Several structural problems are solved to show the usefulness of the present

method.

I. Introduction

NGINEERING optimization technology has been exploited

extensively as an automatic design tool for the design of
structures."? Structural optimizationis to discovera design with the
highest performance satisfying imposed design criteria. The struc-
tural designs are determined in a discrete design space when the
members are forced to be selected from existing or standardized
products. Although continuous optimization delivers an excellent
solution, the result should be modified to have discrete values for
practical applications. In many practical designs, rounded-up (one-
step higher) values are taken without giving further consideration.
When the rounded-up values are chosen, the stress and displace-
ment constraints are usually satisfied due to the excessive design.
However, the eigenvalue constraints are not guaranteed. Therefore,
a method is needed to overcome the difficulties.

Various methods have been suggested for discrete optimization?
They are approaches using the interactive optimization process,*
branch and bound method,? dual method > etc. Several algorithms
such as the genetic algorithm and tabu search are used for the dis-
crete design.®~!° The number of functioncalculationsis significantly
large with these methods. In structural optimization, a function cal-
culationis a finite element analysis, which could be very expensive
for large-scale structures, limiting its use for practical application.

Also, anew design trend has emerged to consider the robustness.
From the viewpoint of optimization, the robustness of the objective
function makes the system performanceinsensitiveto uncertainties.
Rather, the robustness of the constraint function is defined by the
feasibility condition that indicates that the optimum considering
the uncertainties always lies in the feasible region. In the suggested
robustdesign, the uncertaintiesare limited to the variationsof design
variables, whereas the rest are treated as constants.

The robust optimization methods in the continuous design space
have been developed by several researchers.!'~!® In Refs. 17 and
18, the authors proposed robust optimization by using sensitivity
information. However, studies for robust optimization are not well
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advanced in the discrete design space because of the difficulties in
dealing with constraint feasibility. In this research, a method using
the robust design of the Taguchi philosophy'® (also see Ref. 20)
is developed to perform the discrete and robust design. A discrete
design using Taguchi’s parameter design concept'® for an uncon-
strained problem is reviewed in the following section (see Ref. 21).
It is expanded to constrained problems by defining an appropriate
characteristic function. A characteristic function with the standard
deviation and the penalty function has been defined to consider the
robustness. The standard deviation is relevant to the robustness of
the objective function, whereas the penalty function composed of
Lagrange multipliers, maximum violation, and scale factor controls
the constraint robustness.

The method has been applied to the postprocess of constrained
optimization. After the constrained optimizationis performedin the
continuous design space, an orthogonal array, called an inner array,
with discrete values, is established around the continuousoptimiza-
tionresults.'*~2! For eachrow of the innerarray, an orthogonal array,
called an outer array, with variations of design variables, is estab-
lished, and the characteristicfunctionis calculated. The outer array
is adoptedin the numerical experimentsto include the effect of mul-
tiple experiments. The process obeys the parameter design scheme
except that the signal-to-noise ratio (SNR)'*?° is replaced by the
characteristic function. However, the optimum evaluated through
the analysis of the characteristic function does not guarantee fea-
sibility. Thus, the characteristic function estimators with respect to
all combinations are ranked by ascending order. The estimator is a
linearly approximated value. Therefore, the characteristic function
is calculated according to the prescribed order made by the estima-
tor. The characteristic function is made by the outer array, and the
feasibility is checked. The combination with the smallest estimator
satisfying the constraintsis selected as an optimum.

Various example problems are solved. They are well-known stan-
dard problems, which include the three-bar truss and the one-bay,
two-story frame.""> As a practical application, the design of a space
frame in an electrical vehicle is carried out.!! An optimization
software IDESIGN3.3 (Ref. 22) is used for the optimization pro-
cess and a module for the discrete design has been attached to the
software.

II. Robust Design for Unconstrained

Optimization Problems

Unconstrained optimization finds design variables while min-
imizing objective functions without any constraints. This prob-
lem can be relegated to the smaller-the-better-type characteristic
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problems in the Taguchi'® method (see Ref. 21). In the case of the
smaller-the-better-typeproblems, the SNR is defined as

Nout

SNR, = —10log,y | ~— > ey )
out i=1

where f;(x) is the ith characteristic or objective function, x are the
vectors for design variables, and N, is the number of function
calculations considering the uncertainties. 2 In this research, the
uncertainties are confined to the variations of the design variables.
Equation (1) is decomposed into the mean p, and the standard
deviation s, of the characteristics as

Now — 1
SNR; = —10log,, |:pL2f + Lsi} 2)
Noul
where
. A L) = )

wp=y_ fi, 2=

i=1 i=1

Nout -1

From SNR; of Eq. (2), it is found that SNR; is confounded
with the effects on the mean and the standard deviation of the
characteristics>* From the viewpoint of robust design, it is an ad-
vantageto include the effecton the standard deviationonly in Eq. (2)
because the suggested approach is developed for the postprocess of
conventional optimization.

For an unconstrained problem, a multiobjective function modity-
ing the SNR; of Eq. (2) is represented as

o) =a-(ur/ps)+A—a)(s;/s3) (3)

where « is the weighting factor and p and s} are the function
values at the optimum considering only the mean and the standard
deviation as an objective function, respectively. The values 1 s and
s ¢ are the functions of the design variable vectorx. The value of the
weighting factor « is determined by the importance of minimiza-
tion and robustness. The discrete values of the design variables are
selected around the conventional optimum. The minimization of the
objective function is somewhat achieved by conventional optimiza-
tion. Therefore, by only considering the robustness of the objective
function, the multiobjective function of Eq. (3) can be reduced as

D(x) =s; “4)

The mean and the standard deviation of the objective function in
Eqgs. (3) and (4) are evaluated from the outer arrays in which the
uncertainties such as the tolerances of the design variables are in-
cluded. Actually, the standard deviation implies the magnitude of
interval sensitivity with respect to the variations on design vari-
ables. The way to reach the optimum levels is the same as that in
the parameter design of the Taguchi method."

III. Robust Design for Constrained Problems
A. Characteristic Function
A characteristic f(x) + P (x) can be regarded as the new objec-
tive function when P (x) is the penalty function obtained from the
constraintviolation.If the scaling is not consideredin Eq. (3), a mul-
tiobjective function with the new objective functionis expressed as

QW = puyip+(1—a) spp 5)

where (s p is the sample mean and s, p is the sample stan-
dard deviation of the new objective function, respectively. If f(x)
and P.(x) are independent, Wryp=Hyp+ppand s/%+ ,= s? +s7.
Equation (5) then is as follows:

D) =a- (us+pp)+ 1 —a)- /57 +53 6)

In the same manner, the robustdesign in the discrete space is devel-
oped as the postprocess of conventional optimization for the con-
strained problems. On the right-hand side of Eq. (6), only pp of
the first term and only s2 of the second term are considered for
finding an optimum. In the first term of the right-hand side, v, is
not included because minimization is achieved by conventional op-

timization, whereas s,z, in the second term is not included because
the standard deviation of the penalty functionis meaningless. Thus,
Eq. (6) is reduced to

Px)=a-pup+{1—a)- s @

To make the penalty function represented as the first term of
Eq. (7) more conservative, the penalty function P (x) is defined with
the Lagrange multipliers, constraint violation, and scaling factor.
Thus, the first term of Eq. (7) is replaced by Eq. (8) as follows:

m
Px) = Z}‘f x max[0, v] X z ®)
j=1
where m is the number of constraints, A ; is the Lagrange multiplier
of the jth constraint, v is the maximum violation of the constraints,
and z is a scale factor. The penalty function includes the Lagrange
multiplier. The optimum sensitivity theorem is as follows’:

gjlx(e;)] <ej, j=1,....,m ©)
of (x*)
T = )\j (10)

where g; is the jth constraintfunction, e; is a small value, and f (x*)
isthe objectivefunctionat the optimumx*. From Eqgs. (9) and (10), it
is shown that the larger Lagrange multiplierhas a largerinfluence on
the optimum when a small variation is considered. Thus, the design
with the larger Lagrange multiplier can easily become infeasible
when the tolerances of design variables are considered. The penalty
function P (x) has the same scale with the objective function. With
Eq. (8), Eq. (7) is rewritten as follows, called the characteristic
function W (x) (Ref. 24):

V(x) =57+ P(x) (11)

The characteristic function W (x) is evaluated for each row of the
inner array. The constraintviolations are reflected in the characteris-
tic function via the scale factor z. If z is too small, it may be difficult
to obtain a feasible solution. However, a large z might ignore the
robustness of the objective function represented as the standard de-
viation. Thus, an appropriate z has to be chosen deliberately. In the
example problems, the scale factor is set to a value so that the order
of the standard deviation is slightly higher than that of the penalty
function. The scale factor z is imposed to emphasize the constraint
violation.

B. Design Process

The overall process is the same as the approach for the uncon-
strained problem.?! An optimum is evaluated by conventional op-
timization, which has a continuous design space. The number of
levels is set to three for each design variable. The second level is
fixed by the closest candidate from the continuous optimum. The
first and third levels are fixed by the upper and lower ones around
the second level.

An exampleis shownin Fig. 1. Suppose that the number of design
variablesis three and each design variable has five candidate values.
When the closest values from the continuous optimum are A3 B, Cy,
the levels of design variables are selected as Fig. 1.

Design variables and their
candidate values

AP A>A> Az As
B,>B;>B;>B;>B;s
C>C>C>Cy>C

Closegt|values with

continflous optimum : A;B,C,

Levels of design variables \
Design variables

A B C

Level

A, B, Cs
As B, Cy
Ay B;

Fig.1 Selection of level values.
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The best condition can be selected from the full combinations of
design variables. However, it is reasonable to select the smallest or-
thogonal array because full combinations are inefficient and costly.
The smallestsize of the inner array can be obtained by reflecting the
number of the design variables. Also, when the interaction among
the design variables is strong, the interaction should be considered
when choosing the smallest size of an orthogonal array. An in-
teraction occurs when simultaneously considered design variables
have a different effect from the effect made by individual design
variables.”® However, it is not easy to grasp the strong interaction
among the design variables in the structural design. Generally, the
effect of interactionis ignored.

An appropriate orthogonal array can be selected to minimize the
interaction effect as follows: For a problem with three design vari-
ables and three levels, the Ly(3*) orthogonal array of Table 1 is
recommended so that two design variables are allotted for the first
two columns, whereas the rest of the design variables are allotted
for the fourth column. Then, the effects of C and A x B? are con-
founded. For a design problem with more than three design variables
and three levels, special orthogonalarrays such as Lig(2! x 37) and
L36(2" x 3'2) are stronglyrecommended. The L (2" x 37) orthog-
onal array in Table 2 has the advantagein that the effects of interac-
tions are evenly distributed among the columns, with the exception
of the relationship between columns 1 and 2. When a strong inter-
action exists, it should be consideredin the selection process. How-
ever, it is very difficult because the interaction should be identified
before the design process. In this research, the interaction effect is
reduced by the proper choice of an orthogonal array as mentioned
earlier.

The innerarray is an orthogonal array that is used for a parameter
designin the Taguchimethod.'” In a matrix experiment,experiments
for a row of the inner array are conductedrepeatedly to evaluate the
standard deviation of the response. In numerical experiments, the
exactresponseis calculated for given values. Therefore, an orthog-

Table1 Orthogonal array, Lo(3*)

Column
Experiment 1 2 4
1 0 0 0 0
2 0 1 1 1
3 0 2 2 2
4 1 0 1 2
5 1 1 2 0
6 1 2 0 1
7 2 0 2 1
8 2 1 0 2
9 2 2 1 0
DV A B C

Table2 Orthogonal array, L1g(2! x 37)

Column

Experiment 1 2 3 5 6 7 8
1 o o o o0 o0 o0 o0 O
2 0 0 1 1 1 1 11
3 o o 2 2 2 2 2 2
4 0 1 0 0 1 1 2 2
5 0 1 1 1 2 2 0 O
6 0 1 2 2 0 O 11
7 0o 2 0 1 0 2 1 2
8 0o 2 1 2 1 0o 2 0
9 o 2 2 0 2 1 0 1
10 1 0 0o 2 2 1 1 0
11 1 0 1 o o 2 2 1
12 1 0 2 1 1 o o0 2
13 1 1 0 1 2 0 2 1
14 1 1 1 2 0 1 0o 2
15 1 1 2 0 1 2 1 0
16 12 0 2 1 2 0 1
17 12 1 0o 2 0 1 2
18 1 2 2 1 0 1 2 0
DV A B C D E F

onal array (outer array) is applied to a certain row to consider the
toleranceof design variables. The design variables are perturbed ac-
cordingto the outer array. The tolerancesof the design variables can
be regarded as the variations of the design variables. The number of
levels for the tolerances of a design variable is set to three because
the nominal value, lower limit, and upper limit of a design variable
are deliberated. The size of the outer arrays is chosen in the same
way for the inner arrays.

The arrangement of the inner and the outer arrays is shown in
Fig. 2 for a constrained problem. The number of experiments of the
innerarray is representedas N;, in Fig. 2. Eachrow of the inner array
generates a value from the characteristic function given in Eq. (11),
which s calculated from the outer array. The number of experiments
of the outer array is Noy. Now €Xperiments are required to obtain the
SNR or the standard deviation in unconstrained problems, whereas
many experiments are required to obtain the characteristic function
in constrainedproblems. In structuraldesigns, an experimentmeans
one finite element analysis.

After all of the characteristic functions from W, to Wy, in Fig. 2
are calculated, the optimum level of each design variable is deter-
mined by the analysis of the characteristic function. The character-
istic functionis evaluated from Z Aj,z, max[0, v], and s, for each
row of an inner array.

Now the optimum levels are determined. The process is identical
to the parameter design of the Taguchi method,'® except that the
characteristic function is used. As shown in Fig 2, suppose that we
have N, characteristicfunctions. The characteristicfunctionsin the
inner array are summed for each level of the design variables as
shown in Table 3. The level with the smallest value is selected for
the optimum level. In Table 3, [ is the number of levels and Z v,
is the summation of the characteristic function with respect to the
Ith level of the nth design variable. The estimator of the charac-
teristic function with respect to the optimum level is evaluated as
follows?’:

V@) =my +mo+--+m, —(n— D (12)
where
B T
==
Nin

Table 3 Analysis for ¥(x)

Design variable

Level X1 X2 . X

1 2‘1111 Z‘Ijlz . Z‘I’[ln
2 Z‘I—’z[ 2‘1122 . Z‘I"Zn

l DL 7T L 7 S S 78

Outer array
Exp. {Noise Factor
No. |x; x x3 x4
Inner arra P rl .’;‘L;
ol 2 22 2 2 |y
Exp. D.V.
No. | x xm x R k2!
. X X0 X3 X .
[ TR I ol IV
2 222 2
. R, Exp. |Noise Factor
Nee | . . . No. [xy xp x3 x4
*1 111
2 12 22 2 ?ff
\4
. LIJNin
Now

Fig. 2 Arrangement of inner and outer arrays for a constrained
problem.



LEE AND PARK 777

C Start D]
v

Evaluate continuous

optimum, x*.

Select the levels for design
variables and their variations

v

Choose the minimum
orthogonal arrays for the
inner and outer arrays.
Conduct N xN,,, exp.

v

Evaluate the characteristic
functions, %. o
Analyze for characteristic
functions, ¥.

v

Estimate ¥ for each
combination. )

Arrange for the estimators
by ascending order, Set i=1.

N|

Set =i+1
e ———
variables. No

( StBo )

Fig. 3 Flowchart of discrete design for a constrained problem.

| Construct the outer array for i. |

and m,, is the summation of the characteristic function values to
the optimum level of the design variable x, divided by N,,/!.

However, it is not guaranteed that the optimum evaluated by the
analysis of the characteristic function satisfies the imposed con-
straints. This is because the penalty function is an approximated
function. Furthermore, the outer array does not include all of the
combinations of the variations on the design variables. To increase
the constraint feasibility, the scale factor can be made larger. How-
ever, an excessive scale factor leads to neglecting the effect of the
standard deviation. Also, a large scale factor can induce an overde-
sign. The use of the scale factor gives the dimensional balance be-
tween the standard deviation and the penalty function. In this study,
the scale factors are set to 0.1 and 1.0 so that the dimension of the
standard deviation has the same or one higher order. The flow of the
developed method is shown in Fig. 3.

The estimator evaluated by Eq. (12) has the smallest value. Be-
cause the optimum can violate some constraints, it is required that
the combination with the next larger estimator be investigated. For
an automatic loop, the estimators with respectto all combinationsof
the design variables are arranged by ascending order. Evaluating the
estimators of all combinations is not an expensive process because
the real function calculations are not required for determining the
estimator. The ranking is decided by the ascending order of estima-
tors. The combinations are evaluated according to the ranking until
the feasibility condition is satisfied. An outer array is constructed
for each combination. Then the penalty function is calculated, and
the feasibility is checked. If the penalty function is zero, the con-
straints are satisfied in the range of variations. This process needs
additional function calculation of the imposed constraints. The use
of an outer array is cost effective compared to the full combinations
of the variations on design variables. However, perfect feasibility
is not guaranteed. This process is continued until the combination
with the smallest estimator without violating any constraint in the
outer array is discovered.

IV. Examples and Discussion

The designs of truss and beam structures are solved to illustrate
the validity of the developed method. Examples consist of standard
problems such as a three-bar truss and a two-member frame. As a
practical example, it is applied to the design of a space frame in an
electrical vehicle. For each problem, the standard deviation of the
objective functionand the constraintfeasibility are evaluated for the
robustoptimum from the suggested method and the rounded-upval-
ues obtained from continuous optimization. The discrete values are
selected around the optimum evaluated by conventional optimiza-

Table 4 Levels of design variables (three-bar truss)

Design variable

Array Level Ay Ay Az
Inner (x 1073 m?) 1 5.806 1.935 4516

2 5.161 1.290 3.871

3 4.516 0.645 3.226
Outer (x 1075 m?) 1 A +6452 Ay +6452 A3 +6.452

2 A As Az

3 Al —6452 Ay —6452 A3 —6.452

0.254m

P1=177.81kN
Pp=133.36kN
P3=88.906kN
E=68.90Gpa

F2 p=2768kg/m>

Fig.4 Three-bar truss.

tion using recursive quadratic programming ?*> The discrete values
and variations are arbitrarily assigned.

A. Three-Bar Truss

The design of the three-bartruss as shown in Fig. 4 is to determine
the areas A, A,, and A; (Ref. 2). The formulation for deterministic
optimization is represented as

minimize weight(A;, A,, Ajz)
subjectto o; /oy — 1.0 < 0.0
—FI?[n*EA; — 1.0 0.0, Uy [t — 1.0 < 0.0
V4 /v — 1.0 < 0.0, i=1,2,3
fi/fum—1.0=>0.0 (13)

Candidate values are

A (x 1073 m?) =[3.871,4.516,5.161, 5.806, 6.451]
Ay(x 1073 m?) = [0.645, 1.290, 1.935, 2.580, 3.225]
A3 (x 1073 m?) =[2.581,3.226,3.871, 4.516, 5.161]

where o;, uy, vy, f1, Fi, l;, and E are the stress, the horizontal
and the vertical displacements of node 4, the lowest frequency, the
reaction force, the member length, and Young’s modulus, respec-
tively. The allowable stresses oy are 34.450 MPa for members 1 and
3 and 137.804 MPa for member 2. The allowable displacements
uy; and vy, and the allowable frequency f,; are 0.127 x 107> m,
0.127 x 103 m, and 2500 Hz, respectively. The imposed 25 con-
straints and their orders are given in Ref. 1. The conventional op-
timum is evaluated as x* =[5.346 x 1073 m?, 7.719 x 10~* m?,
3.713 x 1073 m?]".

Suppose that the first frequency should be retained without any
drasticchange. The standarddeviationof Eq. (11) correspondsto the
one with respect to the first frequency. With the candidate values of
design variables and the continuous optimum, the levels of design
variables for the inner array are determined as shown in Table 4.
Lo(3*) orthogonal arrays are selected as the inner array and the
outer arrays because the number of design variables is three. The
variations of the design variables for the outer array are shown in
Table 4. Table 5 gives the optimum combination of the design vari-
ables where the scale factor is set to 1.0.

In Table 5, the rank is arranged according to the estimator value.
Each estimatoris derived from Eq. (12). For the first rank, the com-
bination is [A}, A5, A3]" =[level 2, level 1, level 1]7. However,
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Table 5 Optimum level for a constrained problem (three-bar truss)

Level

EstimatAor of ¥ sf, Weight, Constraint
SF, z Rank (W) AT A A Hz kg violated?
1.0 1 4.879 2 1 1 5111 1.100 Yes
1.0 2 5.938 2 2 1 5.628 1.053 Yes
1.0 3 6.016 1 1 1 5515 1.162 No
Rounded-up values 1 2 2 8221 1.053 Yes
Table 6 Levels of design variables (one-bay, two-story frame)
Design variable
Array Level wi hy 31 wy hy 23
Inner (x 1073 m) 1 500 550 15 200 450 15
2 450 500 13 150 400 13
3 400 450 11 100 350 11
Outer (x 1073 m) 1 wy+10 A +10  fH+1 wy+10  hy+10  fH+1
2 wq /11 N wa /12 1%
3 wy—10 =10 -1 wy—10  hy—10 -1

Table 7 Optimum level for a constrained problem (one-bay, two-story frame)

EstimatAor of ¥ Level sw, Weight, Constraint

SF, z Rank (v) wi AT tf wi kY oty kg kg violated?

1.0 1 27.15 2 1 1 2 1 2 2653 57446 No

0.1 1 230.98 32 1 2 2 2 2388 5171.1 Yes

0.1 2 231.22 3 3 1 2 2 2 2266 49354 Yes

0.1 3 231.85 3 2 1 2 1 2 2407 52732 Yes

0.1 4 232.09 3 3 1 2 1 2 2286 5037.6 Yes

0.1 5 233.19 2 2 1 2 2 2 2511 54068 No

Rounded-up values 2 2 3 1 2 3 2542 4206.7 Yes
the optimum does not satisfy the imposed constraint of number 19 980G N/m
(Ref. 2) when the outer array of the combination is evaluated. The 08 kN @ [IIIIl]l]]l®
constraintfor the second rank is also violated. Thus, the design with ! 3
the third ranked combinationis selected as the optimum design. The .
standard deviationfor the robustnessof the first frequencyis slightly = 5
worse than that of the first ranked combination. On the contrary, the $8OL N/m
feasibility is enhanced. For the rounded-up values, the constraintis SITTTIII I I®
violated, and the standard deviation becomes worse than that of the B KN .
third ranked combination of the robust optimum by 49%. As men- w
t@onedearlier,perfectfeas.ibilityis not gugranteedbecauseitis inves- L 6 5m H
tigated only by the combinations determined from the outer array. y

@ t E ;
B. One-Bay, Two-Story Frame % - /2
The design of the one-bay, two-story frame shown in Fig. 5 is . Soction view

to determine the width w, the height %, and the thickness 7 of each f J ' o
section under multiple loadings." The conventional optimization is Material : steel Design Variable Linking

formulated as
minimize weight(wy, hy, t;, wa, hy, 1))
j=1...,6
k=2,...,5
(14)

subjectto o; /oy — 1.0 < 0.0,
uk/ual] —1.0 < OO, vk/va“ - 1.0 < OO,
fi/far—1.0>0.0

Candidate values are
wy, hy, by (x 1073 m) = [350, 400, 450, 500, 550]
w,(x 1073 m) = [100, 150, 200, 250, 300]

H(x 107 m) =9, 11, 13, 15, 17], i=1,2

where o,; =24.5 MPa, u,;; =8.0x 1073 m, vy =0.1 x 1073 m,
and fu1 = 5.0 Hz, respectively. The optimum in the continuous de-
sign space is

*

T
* __ * * * * *
xo=[wl o hotrowy by

=[424.18x 10 m 48479 x10°m 10.0x 1073 m

15239x 10 m 376.66 x 10> m

L.C.1 : Concentrated Load
L.C. 2 : Distributed Load

No. 1: Elements 1,2,5,6
No. 2: Elements 3,4

Fig.5 One-bay, two-story frame.

The standarddeviationof Eq. (11) is considered while the penalty
function reflects all of the imposed constraints. Thus, the method
provides the design with minimum variations of the weights while
satisfying the constraintsin the discrete design space. The discrete
values around the conventional optimum and their variations are as-
sumed as shown in Table 6. Because there are six design variables,
L5(2' x 37) orthogonal arrays are utilized as the inner and outer
arrays. The first and the last columns in the arrays are empty. The
optimum combinations with the scale factorsof 1.0 and 0.1 are listed
in Table 7. When the scale factor is 1.0, the combination with the
smallest estimator satisfies the constraints. However, when the scale
factoris setto 0.1, the optimum levels are selected as the design with
the fifth rank. If the scale factoris large, the probability of satistying

10.0 x 107> m]”
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the constraintsis increased because the penalty function is empha-
sized more than the standard deviationin the characteristic function.
That is, the robustness of the constraintsis reflected more than that
of the objective function. However, such a phenomenon leads to
excessive design due to the increase of the objective function. For
the rounded-up values, the constraint is violated, and the standard
deviation becomes worse than that of the fifth-ranked combination
of the robust optimum by 1%.

C. Space Frame of an Electrical Vehicle

The development of an electrical vehicle has been carried out
to provide a pollution-free vehicle. The heavy structure deteriorates
the overall performance of the vehicle. Thus, structural optimization
is adopted to lighten the vehicle while maintaining mechanical per-
formances.

As shown in Fig. 6, the aluminum space frame of an electrical
vehicle consists of a roof, a support and rear frame, a floor panel,
and strut parts.'?® The beam modeling for the space frame struc-
tures is more convenient than the monocoque type because of the
simple sections of the body-in-white (BIW). In the conceptual or
preliminary design stage, it is important to have good dynamic per-
formances, which are represented as first torsion and first bending
modes. In the initial design, the space frame has the first torsion
mode of 32.01 Hz and the first bending mode of 38.94 Hz. These
performances are utilized as constrained boundsin Eq. (15). There-
fore, the formulationfor deterministicoptimizationis representedas

minimize Weight(wl, hl JH, e, We, hﬁ, tG)

subjectto  fj (first torsion) > 32.01 Hz
Sf>(first bending) > 38.94 Hz (15)

Candidate values are
f(x107* m) = [4.8,5.0,5.2,5.4,5.6]
£(x1073 m) = [2.8,3.0, 3.2, 3.4, 3.6], i=2,...,6

The design variables in the continuous design space are selected
as widths, heights, and thicknesses of sections of the pillars and
side members. The section views of the members are equal to those
of the one-bay, two-story frame as shown in Fig. 5. The members
with the design variables are shown as boldface lines in Fig. 6.
The thicknesses of the frame should be selected from the standard
products of discrete design variables. Thus, the thicknessesare used
for design variables,and their discrete values around the continuous
optimum are listed in Table 8.

Table 8 Levels of design variables (space frame)

Design variable

Array Level t t 3 ty ts Is

Inner (x1073 m) 1 54 34 34 34 34 34
2 52 32 32 32 32 32
3 50 30 30 30 3.0 30
Outer (i =1, 6) 1 ti +(t x0.1)
2 t
3 t; — (t; x0.1)
roof frame support frame

Fig. 6 Stick model of space frame in an electrical vehicle.

The tolerances of the design variables are set to have 10% of the
design variables (DVs). In the same manner as with the one-bay,
two-story frame, Lg(2! x 37) orthogonal arrays are utilized as the
inner and outer arrays. In this design, Eq. (11) is composed into the
standard deviation of BIW’s weight and the penalty function of two
dominant frequencies.

With the scale factor (SF) of 0.1, the optimum levels are deter-
mined as [, b, B, L, ts, t]7 =[level 1, level 1, level 1, level 1,
level 3, level 2]”. This robust optimum has 32.12 Hz of the first fre-
quency and 38.96 Hz of the second frequency. It is determined from
the sixth ranked estimator for the characteristic functions. The stan-
dard deviations of the robust optimum and the rounded-up values
are 0.112 and 0.105, respectively. It may seem that the rounded-up
values have better robustness. However, the first constraint is vio-
lated, though its standard deviation is smaller than that of the robust
optimum. Thus, the design determined from the rounded-up values
is useless. This phenomenon is frequently found in the rounded-up
design.

V. Conclusions

The following conclusions can be made from this study:

1) The discrete design is developed as a postprocess of con-
strained optimization in the continuousdesign space. It is used as a
postprocess to increase the feasibility chance. However, the devel-
oped method can be used from the beginning without conventional
optimization. Through the robust design procedure, a structure is
designed to be less sensitive to the variations of DVs enhancing the
feasibility of the constraintfunction. The constraintfeasibility is in-
vestigated by ranking the estimators of the characteristic function.
This method can be applied with low computing cost, whereas the
existing discrete optimizations are excellent but expensive.

2) By definition of the characteristic function, the constrained
optimization problems are solved by the parameter design of the
Taguchi method.'® The SNR of the Taguchi method is replaced by
the characteristic function composed of the standard deviation and
the penalty function. The standard deviation denotes the robustness
of the object function. On the contrary, the penalty function rep-
resents the robustness of constraint functions. In the characteristic
function, the reasonable SF prevents an excessive design and re-
duces the function calculations for investigating the feasibility of
the constraints.

3) Orthogonal arrays from the experimental design are adopted
successfully in the discrete design of structures. Most structural
problems have interactions between the DVs, though their effects
are not generally predicted. Thus, for the design problem with more
than three DVs and three levels, it is strongly recommended that
special orthogonal arrays such as Lg(2' x 37) and L3s(2'! x 3'2)
be selected so that the effects of interactions are evenly distributed
among the columns. When a strong interaction exists, it should be
considered in the design process. In future studies, the interaction
of the structural characteristics must be investigated, and structural
design must use the interaction.
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