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Robust design in discrete design space is de� ned as a discrete design that is insensitive to external uncertainties or
variations.The applicationof robust discrete design is not prevalent yet due to high computationalcost. A relatively
simple method is proposed to select discrete and robust optimum. At � rst, the discrete design is achieved as the
postprocess of conventionaloptimization.An orthogonal array is established around a conventionaloptimum,and
the characteristic functionsareevaluated.The characteristic functionis de� ned by considering the robustness of the
objective and constraints. The parameter design of the Taguchi method is introduced to obtain the robust solution
in discrete space. The present method has insensitive performance to variations of the design variables within the
selected discrete values enhancing the feasibility of constraints. To enhance feasibility, ranking the estimators of the
characteristic function is developed. Several structural problems are solved to show the usefulness of the present
method.

I. Introduction

E NGINEERING optimization technology has been exploited
extensively as an automatic design tool for the design of

structures.1;2 Structural optimizationis to discovera design with the
highest performance satisfying imposed design criteria. The struc-
tural designs are determined in a discrete design space when the
members are forced to be selected from existing or standardized
products. Although continuous optimization delivers an excellent
solution, the result should be modi� ed to have discrete values for
practical applications. In many practical designs, rounded-up (one-
step higher) values are taken without giving further consideration.
When the rounded-up values are chosen, the stress and displace-
ment constraints are usually satis� ed due to the excessive design.
However, the eigenvalue constraints are not guaranteed. Therefore,
a method is needed to overcome the dif� culties.

Various methods have been suggested for discrete optimization.3

They are approaches using the interactive optimization process,4

branch and bound method,5 dual method,6;7 etc. Several algorithms
such as the genetic algorithm and tabu search are used for the dis-
cretedesign.8¡10 Thenumberof functioncalculationsis signi� cantly
large with these methods. In structural optimization, a function cal-
culation is a � nite element analysis, which could be very expensive
for large-scale structures, limiting its use for practical application.

Also, a new design trend has emerged to consider the robustness.
From the viewpoint of optimization, the robustnessof the objective
functionmakes the system performanceinsensitiveto uncertainties.
Rather, the robustness of the constraint function is de� ned by the
feasibility condition that indicates that the optimum considering
the uncertaintiesalways lies in the feasible region. In the suggested
robustdesign, theuncertaintiesare limited to the variationsof design
variables, whereas the rest are treated as constants.

The robust optimization methods in the continuous design space
have been developed by several researchers.11¡16 In Refs. 17 and
18, the authors proposed robust optimization by using sensitivity
information. However, studies for robust optimization are not well
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advanced in the discrete design space because of the dif� culties in
dealing with constraint feasibility. In this research, a method using
the robust design of the Taguchi philosophy19 (also see Ref. 20)
is developed to perform the discrete and robust design. A discrete
design using Taguchi’s parameter design concept19 for an uncon-
strained problem is reviewed in the following section (see Ref. 21).
It is expanded to constrained problems by de� ning an appropriate
characteristic function. A characteristic function with the standard
deviation and the penalty function has been de� ned to consider the
robustness. The standard deviation is relevant to the robustness of
the objective function, whereas the penalty function composed of
Lagrange multipliers,maximum violation,and scale factor controls
the constraint robustness.

The method has been applied to the postprocess of constrained
optimization.After the constrainedoptimizationis performed in the
continuousdesign space, an orthogonal array, called an inner array,
with discretevalues, is establishedaround the continuousoptimiza-
tion results.19¡21 For each row of the innerarray,an orthogonalarray,
called an outer array, with variations of design variables, is estab-
lished, and the characteristicfunction is calculated.The outer array
is adoptedin the numericalexperimentsto include the effect of mul-
tiple experiments. The process obeys the parameter design scheme
except that the signal-to-noise ratio (SNR)19;20 is replaced by the
characteristic function. However, the optimum evaluated through
the analysis of the characteristic function does not guarantee fea-
sibility. Thus, the characteristic function estimators with respect to
all combinations are ranked by ascending order. The estimator is a
linearly approximated value. Therefore, the characteristic function
is calculated according to the prescribed order made by the estima-
tor. The characteristic function is made by the outer array, and the
feasibility is checked. The combination with the smallest estimator
satisfying the constraints is selected as an optimum.

Various example problems are solved.They are well-known stan-
dard problems, which include the three-bar truss and the one-bay,
two-story frame.1;2 As a practical application, the design of a space
frame in an electrical vehicle is carried out.11 An optimization
software IDESIGN3.3 (Ref. 22) is used for the optimization pro-
cess and a module for the discrete design has been attached to the
software.

II. Robust Design for Unconstrained
Optimization Problems

Unconstrained optimization � nds design variables while min-
imizing objective functions without any constraints. This prob-
lem can be relegated to the smaller-the-better-type characteristic
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problems in the Taguchi19 method (see Ref. 21). In the case of the
smaller-the-better-typeproblems, the SNR is de� ned as

SNRs D ¡10 log10

"
1

Nout

NoutX

i D 1

fi .x/2

#
(1)

where fi .x/ is the i th characteristicor objective function, x are the
vectors for design variables, and Nout is the number of function
calculations considering the uncertainties.19;20 In this research, the
uncertainties are con� ned to the variations of the design variables.
Equation (1) is decomposed into the mean ¹ f and the standard
deviation s f of the characteristicsas

SNRs D ¡10 log10
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From SNRs of Eq. (2), it is found that SNRs is confounded
with the effects on the mean and the standard deviation of the
characteristics.23 From the viewpoint of robust design, it is an ad-
vantageto include the effecton the standarddeviationonly in Eq. (2)
because the suggested approach is developed for the postprocessof
conventional optimization.

For an unconstrainedproblem, a multiobjectivefunctionmodify-
ing the SNRs of Eq. (2) is represented as

8.x/ D ® ¢
¡
¹ f

¯
¹¤

f

¢
C .1 ¡ ®/ ¢

¡
s f

¯
s¤

f

¢
(3)

where ® is the weighting factor and ¹¤
f and s¤

f are the function
values at the optimum considering only the mean and the standard
deviation as an objective function, respectively.The values ¹ f and
s f are the functionsof the design variable vector x. The value of the
weighting factor ® is determined by the importance of minimiza-
tion and robustness. The discrete values of the design variables are
selectedaround the conventionaloptimum. The minimizationof the
objective function is somewhat achieved by conventionaloptimiza-
tion. Therefore, by only considering the robustness of the objective
function, the multiobjective function of Eq. (3) can be reduced as

8.x/ D s f (4)

The mean and the standard deviation of the objective function in
Eqs. (3) and (4) are evaluated from the outer arrays in which the
uncertainties such as the tolerances of the design variables are in-
cluded. Actually, the standard deviation implies the magnitude of
interval sensitivity with respect to the variations on design vari-
ables. The way to reach the optimum levels is the same as that in
the parameter design of the Taguchi method.19

III. Robust Design for Constrained Problems
A. Characteristic Function

A characteristic f .x/ C P.x/ can be regarded as the new objec-
tive function when P.x/ is the penalty function obtained from the
constraintviolation.If the scaling is not consideredin Eq. (3), a mul-
tiobjective function with the new objective function is expressed as

8.x/ D ® ¢ ¹ f C P C .1 ¡ ®/ ¢ s f C P (5)

where ¹ f C P is the sample mean and s f C P is the sample stan-
dard deviation of the new objective function, respectively. If f .x/
and P.x/ are independent, ¹ f C P D ¹ f C ¹P and s2

f C p D s2
f C s2

p .
Equation (5) then is as follows:

8.x/ D ® ¢ .¹ f C ¹P / C .1 ¡ ®/ ¢
q

s2
f C s2

P (6)

In the same manner, the robust design in the discrete space is devel-
oped as the postprocess of conventional optimization for the con-
strained problems. On the right-hand side of Eq. (6), only ¹P of
the � rst term and only s2

f of the second term are considered for
� nding an optimum. In the � rst term of the right-hand side, ¹ f is
not included because minimization is achieved by conventionalop-

timization, whereas s2
P in the second term is not included because

the standarddeviationof the penalty function is meaningless.Thus,
Eq. (6) is reduced to

8.x/ D ® ¢ ¹P C .1 ¡ ®/ ¢ s f (7)

To make the penalty function represented as the � rst term of
Eq. (7) more conservative,the penalty function P.x/ is de� ned with
the Lagrange multipliers, constraint violation, and scaling factor.
Thus, the � rst term of Eq. (7) is replaced by Eq. (8) as follows:

P.x/ D
mX

j D 1

¸ j £ max[0; v] £ z (8)

where m is the number of constraints,¸ j is the Lagrange multiplier
of the j th constraint,v is the maximum violation of the constraints,
and z is a scale factor. The penalty function includes the Lagrange
multiplier. The optimum sensitivity theorem is as follows2:

g j [x.e j /] · e j ; j D 1; : : : ; m (9)

@ f .x¤/

@e j
D ¸ j (10)

where g j is the j th constraintfunction,e j is a small value, and f .x¤/
is the objectivefunctionat the optimumx¤. From Eqs. (9) and (10), it
is shown that the largerLagrangemultiplierhas a larger in� uenceon
the optimum when a small variation is considered.Thus, the design
with the larger Lagrange multiplier can easily become infeasible
when the tolerancesof design variablesare considered.The penalty
function P.x/ has the same scale with the objective function. With
Eq. (8), Eq. (7) is rewritten as follows, called the characteristic
function 9.x/ (Ref. 24):

9.x/ D s f C P.x/ (11)

The characteristicfunction 9.x/ is evaluated for each row of the
inner array.The constraintviolationsare re� ected in the characteris-
tic functionvia the scale factor z. If z is too small, it may be dif� cult
to obtain a feasible solution. However, a large z might ignore the
robustnessof the objective function represented as the standard de-
viation. Thus, an appropriate z has to be chosen deliberately. In the
example problems, the scale factor is set to a value so that the order
of the standard deviation is slightly higher than that of the penalty
function. The scale factor z is imposed to emphasize the constraint
violation.

B. Design Process
The overall process is the same as the approach for the uncon-

strained problem.21 An optimum is evaluated by conventional op-
timization, which has a continuous design space. The number of
levels is set to three for each design variable. The second level is
� xed by the closest candidate from the continuous optimum. The
� rst and third levels are � xed by the upper and lower ones around
the second level.

An example is shown in Fig. 1. Suppose that the numberof design
variablesis three and each designvariablehas � ve candidatevalues.
When the closest values from the continuousoptimum are A3 B2C4,
the levels of design variables are selected as Fig. 1.

Fig. 1 Selection of level values.
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The best condition can be selected from the full combinationsof
design variables. However, it is reasonableto select the smallest or-
thogonal array because full combinations are inef� cient and costly.
The smallest size of the inner array can be obtainedby re� ecting the
number of the design variables. Also, when the interaction among
the design variables is strong, the interaction should be considered
when choosing the smallest size of an orthogonal array. An in-
teraction occurs when simultaneously considered design variables
have a different effect from the effect made by individual design
variables.25 However, it is not easy to grasp the strong interaction
among the design variables in the structural design. Generally, the
effect of interaction is ignored.

An appropriateorthogonal array can be selected to minimize the
interaction effect as follows: For a problem with three design vari-
ables and three levels, the L9.34/ orthogonal array of Table 1 is
recommended so that two design variables are allotted for the � rst
two columns, whereas the rest of the design variables are allotted
for the fourth column. Then, the effects of C and A £ B2 are con-
founded.For a designproblemwith more than threedesignvariables
and three levels, special orthogonalarrays such as L18.21 £ 37/ and
L36.211 £ 312/ are stronglyrecommended.The L18.21 £ 37/ orthog-
onal array in Table 2 has the advantage in that the effects of interac-
tions are evenly distributed among the columns, with the exception
of the relationship between columns 1 and 2. When a strong inter-
action exists, it should be consideredin the selection process.How-
ever, it is very dif� cult because the interaction should be identi� ed
before the design process. In this research, the interaction effect is
reduced by the proper choice of an orthogonal array as mentioned
earlier.

The inner array is an orthogonalarray that is used for a parameter
design in theTaguchimethod.19 In a matrix experiment,experiments
for a row of the inner array are conductedrepeatedly to evaluate the
standard deviation of the response. In numerical experiments, the
exact response is calculated for given values. Therefore, an orthog-

Table 1 Orthogonal array, L9(34 )

Column

Experiment 1 2 3 4

1 0 0 0 0
2 0 1 1 1
3 0 2 2 2
4 1 0 1 2
5 1 1 2 0
6 1 2 0 1
7 2 0 2 1
8 2 1 0 2
9 2 2 1 0
DV A B C

Table 2 Orthogonal array, L18(21 £ £ 37 )

Column

Experiment 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 0 1 1 1 1 1 1
3 0 0 2 2 2 2 2 2
4 0 1 0 0 1 1 2 2
5 0 1 1 1 2 2 0 0
6 0 1 2 2 0 0 1 1
7 0 2 0 1 0 2 1 2
8 0 2 1 2 1 0 2 0
9 0 2 2 0 2 1 0 1
10 1 0 0 2 2 1 1 0
11 1 0 1 0 0 2 2 1
12 1 0 2 1 1 0 0 2
13 1 1 0 1 2 0 2 1
14 1 1 1 2 0 1 0 2
15 1 1 2 0 1 2 1 0
16 1 2 0 2 1 2 0 1
17 1 2 1 0 2 0 1 2
18 1 2 2 1 0 1 2 0
DV A B C D E F

onal array (outer array) is applied to a certain row to consider the
toleranceof design variables.The design variablesare perturbedac-
cordingto the outer array. The tolerancesof the design variablescan
be regardedas the variationsof the design variables.The number of
levels for the tolerances of a design variable is set to three because
the nominal value, lower limit, and upper limit of a design variable
are deliberated. The size of the outer arrays is chosen in the same
way for the inner arrays.

The arrangement of the inner and the outer arrays is shown in
Fig. 2 for a constrainedproblem. The number of experimentsof the
innerarray is representedas Nin in Fig. 2. Each row of the inner array
generates a value from the characteristicfunction given in Eq. (11),
which is calculatedfrom the outer array.The numberof experiments
of the outer array is Nout. Nout experimentsare required to obtain the
SNR or the standard deviation in unconstrainedproblems, whereas
many experiments are required to obtain the characteristicfunction
in constrainedproblems. In structuraldesigns, an experimentmeans
one � nite element analysis.

After all of the characteristicfunctions from 91 to 9N in in Fig. 2
are calculated, the optimum level of each design variable is deter-
mined by the analysis of the characteristicfunction. The character-
istic function is evaluated from

P
¸ j ; z; max[0; v], and s f for each

row of an inner array.
Now the optimum levels are determined. The process is identical

to the parameter design of the Taguchi method,19 except that the
characteristic function is used. As shown in Fig 2, suppose that we
have Nin characteristicfunctions.The characteristicfunctions in the
inner array are summed for each level of the design variables as
shown in Table 3. The level with the smallest value is selected for
the optimum level. In Table 3, l is the number of levels and

P
9ln

is the summation of the characteristic function with respect to the
lth level of the nth design variable. The estimator of the charac-
teristic function with respect to the optimum level is evaluated as
follows20:

O9.x/ D m x1 C m x2 C ¢ ¢ ¢ C m xn ¡ .n ¡ 1/ Nm (12)

where

Nm D 1
Nin

¢
NinX

i D 1

9i

Table 3 Analysis for W (x)

Design variable

Level x1 x2 . xn

1
P

911

P
912 .

P
91n

2
P

921

P
922 .

P
92n

. . . .

. . . .

l
P

9l1

P
9l2 .

P
9ln

Fig. 2 Arrangement of inner and outer arrays for a constrained
problem.
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Fig. 3 Flowchart of discrete design for a constrained problem.

and mxn is the summation of the characteristic function values to
the optimum level of the design variable xn divided by Nin=l.

However, it is not guaranteed that the optimum evaluated by the
analysis of the characteristic function satis� es the imposed con-
straints. This is because the penalty function is an approximated
function. Furthermore, the outer array does not include all of the
combinations of the variations on the design variables. To increase
the constraint feasibility, the scale factor can be made larger. How-
ever, an excessive scale factor leads to neglecting the effect of the
standard deviation.Also, a large scale factor can induce an overde-
sign. The use of the scale factor gives the dimensional balance be-
tween the standard deviation and the penalty function. In this study,
the scale factors are set to 0.1 and 1.0 so that the dimension of the
standard deviationhas the same or one higher order. The � ow of the
developed method is shown in Fig. 3.

The estimator evaluated by Eq. (12) has the smallest value. Be-
cause the optimum can violate some constraints, it is required that
the combination with the next larger estimator be investigated.For
an automatic loop, the estimatorswith respect to all combinationsof
the design variablesare arrangedby ascendingorder.Evaluating the
estimators of all combinations is not an expensive process because
the real function calculations are not required for determining the
estimator. The ranking is decided by the ascendingorder of estima-
tors. The combinations are evaluated according to the ranking until
the feasibility condition is satis� ed. An outer array is constructed
for each combination. Then the penalty function is calculated, and
the feasibility is checked. If the penalty function is zero, the con-
straints are satis� ed in the range of variations. This process needs
additional function calculation of the imposed constraints. The use
of an outer array is cost effectivecompared to the full combinations
of the variations on design variables. However, perfect feasibility
is not guaranteed. This process is continued until the combination
with the smallest estimator without violating any constraint in the
outer array is discovered.

IV. Examples and Discussion
The designs of truss and beam structures are solved to illustrate

the validity of the developedmethod. Examples consist of standard
problems such as a three-bar truss and a two-member frame. As a
practical example, it is applied to the design of a space frame in an
electrical vehicle. For each problem, the standard deviation of the
objective functionand the constraint feasibilityare evaluatedfor the
robustoptimum from the suggestedmethod and the rounded-upval-
ues obtained from continuousoptimization.The discrete values are
selected around the optimum evaluated by conventional optimiza-

Table 4 Levels of design variables (three-bar truss)

Design variable

Array Level A1 A2 A3

Inner (£10¡3 m2) 1 5.806 1.935 4.516
2 5.161 1.290 3.871
3 4.516 0.645 3.226

Outer (£10¡5 m2 ) 1 A1 C 6:452 A2 C 6:452 A3 C 6:452
2 A1 A2 A3
3 A1 ¡ 6:452 A2 ¡ 6:452 A3 ¡ 6:452

Fig. 4 Three-bar truss.

tion using recursive quadratic programming.22 The discrete values
and variations are arbitrarily assigned.

A. Three-Bar Truss
The designof the three-bartruss as shown in Fig. 4 is to determine

the areas A1, A2, and A3 (Ref. 2). The formulation for deterministic
optimization is represented as

minimize weight.A1; A2; A3/

subject to ¾i=¾all ¡ 1:0 · 0:0

¡Fi l
2
i

¯
¼ 2 E Ai ¡ 1:0 · 0:0; u4=uall ¡ 1:0 · 0:0

v4=vall ¡ 1:0 · 0:0; i D 1; 2; 3

f1= fall ¡ 1:0 ¸ 0:0 (13)

Candidate values are

A1.£ 10¡3 m2/ D [3:871; 4:516; 5:161; 5:806; 6:451]

A2.£ 10¡3 m2/ D [0:645; 1:290; 1:935; 2:580; 3:225]

A3.£ 10¡3 m2/ D [2:581; 3:226; 3:871; 4:516; 5:161]

where ¾i , u4, v4, f1, Fi , li , and E are the stress, the horizontal
and the vertical displacements of node 4, the lowest frequency, the
reaction force, the member length, and Young’s modulus, respec-
tively.The allowablestresses¾all are 34.450MPa for members 1 and
3 and 137.804 MPa for member 2. The allowable displacements
uall and vall and the allowable frequency fall are 0:127 £ 10¡3 m,
0:127 £ 10¡3 m, and 2500 Hz, respectively. The imposed 25 con-
straints and their orders are given in Ref. 1. The conventional op-
timum is evaluated as x¤ D [5:346 £ 10¡3 m2, 7:719 £ 10¡4 m2,
3:713 £ 10¡3 m2]T .

Suppose that the � rst frequency should be retained without any
drasticchange.The standarddeviationofEq. (11) correspondsto the
one with respect to the � rst frequency.With the candidate values of
design variables and the continuous optimum, the levels of design
variables for the inner array are determined as shown in Table 4.
L9.34/ orthogonal arrays are selected as the inner array and the
outer arrays because the number of design variables is three. The
variations of the design variables for the outer array are shown in
Table 4. Table 5 gives the optimum combinationof the design vari-
ables where the scale factor is set to 1.0.

In Table 5, the rank is arranged according to the estimator value.
Each estimator is derived from Eq. (12). For the � rst rank, the com-
bination is [A¤

1; A¤
2; A¤

3]T D [level 2, level 1, level 1]T . However,
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Table 5 Optimum level for a constrained problem (three-bar truss)

Level
Estimator of 9 s f , Weight, Constraint

SF, z Rank ( O9 ) A¤
1 A¤

2 A¤
3 Hz kg violated?

1.0 1 4.879 2 1 1 5.111 1.100 Yes
1.0 2 5.938 2 2 1 5.628 1.053 Yes
1.0 3 6.016 1 1 1 5.515 1.162 No
Rounded-up values 1 2 2 8.221 1.053 Yes

Table 6 Levels of design variables (one-bay, two-story frame)

Design variable

Array Level w1 h1 t1 w2 h2 t2

Inner (£10¡3 m) 1 500 550 15 200 450 15
2 450 500 13 150 400 13
3 400 450 11 100 350 11

Outer (£10¡3 m) 1 w1 C 10 h1 C 10 t1 C 1 w2 C 10 h2 C 10 t2 C 1
2 w1 h1 t1 w2 h2 t2
3 w1 ¡ 10 h1 ¡ 10 t1 ¡ 1 w2 ¡ 10 h2 ¡ 10 t2 ¡ 1

Table 7 Optimum level for a constrained problem (one-bay, two-story frame)

Level
Estimator of 9 sw , Weight, Constraint

SF, z Rank ( O9 ) w¤
1 h¤

1 t ¤
1 w¤

2 h¤
2 t ¤

2 kg kg violated?

1.0 1 27.15 2 1 1 2 1 2 265.3 5744.6 No
0.1 1 230.98 3 2 1 2 2 2 238.8 5171.1 Yes
0.1 2 231.22 3 3 1 2 2 2 226.6 4935.4 Yes
0.1 3 231.85 3 2 1 2 1 2 240.7 5273.2 Yes
0.1 4 232.09 3 3 1 2 1 2 228.6 5037.6 Yes
0.1 5 233.19 2 2 1 2 2 2 251.1 5406.8 No
Rounded-up values 2 2 3 1 2 3 254.2 4206.7 Yes

the optimum does not satisfy the imposed constraint of number 19
(Ref. 2) when the outer array of the combination is evaluated. The
constraint for the second rank is also violated.Thus, the design with
the third ranked combinationis selectedas the optimum design.The
standarddeviationfor the robustnessof the � rst frequencyis slightly
worse than that of the � rst ranked combination.On the contrary, the
feasibility is enhanced.For the rounded-up values, the constraint is
violated, and the standard deviation becomes worse than that of the
third ranked combination of the robust optimum by 49%. As men-
tionedearlier,perfectfeasibilityis notguaranteedbecauseit is inves-
tigated only by the combinations determined from the outer array.

B. One-Bay, Two-Story Frame
The design of the one-bay, two-story frame shown in Fig. 5 is

to determine the width w, the height h, and the thickness t of each
section under multiple loadings.1 The conventional optimization is
formulated as

minimize weight.w1; h1; t1; w2; h2; t2/

subject to ¾ j=¾all ¡ 1:0 · 0:0; j D 1; : : : ; 6

uk=uall ¡ 1:0 · 0:0; vk=vall ¡ 1:0 · 0:0; k D 2; : : : ; 5

f1= fall ¡ 1:0 ¸ 0:0 (14)

Candidate values are

w1; h1; h2.£ 10¡3 m/ D [350; 400; 450; 500; 550]

w2.£ 10¡3 m/ D [100; 150; 200; 250; 300]

ti .£ 10¡3 m/ D [9; 11; 13; 15; 17]; i D 1; 2

where ¾all D 24:5 MPa, uall D 8:0 £ 10¡3 m, vall D 0:1 £ 10¡3 m,
and fall D 5:0 Hz, respectively.The optimum in the continuous de-
sign space is

x¤ D
£
w¤

1 h¤
1 t¤

1 w¤
2 h¤

2 t¤
2

¤T

D [424:18 £ 10¡3 m 484:79 £ 10¡3 m 10:0 £ 10¡3 m 152:39 £ 10¡3 m 376:66 £ 10¡3 m 10:0 £ 10¡3 m]T

Fig. 5 One-bay, two-story frame.

The standarddeviationof Eq. (11) is consideredwhile the penalty
function re� ects all of the imposed constraints. Thus, the method
provides the design with minimum variations of the weights while
satisfying the constraints in the discrete design space. The discrete
values around the conventionaloptimum and their variationsare as-
sumed as shown in Table 6. Because there are six design variables,
L18.21 £ 37/ orthogonal arrays are utilized as the inner and outer
arrays. The � rst and the last columns in the arrays are empty. The
optimumcombinationswith the scale factorsof 1.0 and 0.1 are listed
in Table 7. When the scale factor is 1.0, the combination with the
smallest estimator satis� es the constraints.However,when the scale
factor is set to 0.1, the optimum levels are selectedas the designwith
the � fth rank. If the scale factor is large, the probabilityof satisfying
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the constraints is increased because the penalty function is empha-
sized more than the standarddeviation in the characteristicfunction.
That is, the robustness of the constraints is re� ected more than that
of the objective function. However, such a phenomenon leads to
excessive design due to the increase of the objective function. For
the rounded-up values, the constraint is violated, and the standard
deviation becomes worse than that of the � fth-ranked combination
of the robust optimum by 1%.

C. Space Frame of an Electrical Vehicle
The development of an electrical vehicle has been carried out

to provide a pollution-freevehicle.The heavy structuredeteriorates
the overallperformanceof the vehicle.Thus, structuraloptimization
is adopted to lighten the vehicle while maintaining mechanical per-
formances.

As shown in Fig. 6, the aluminum space frame of an electrical
vehicle consists of a roof, a support and rear frame, a � oor panel,
and strut parts.11;26 The beam modeling for the space frame struc-
tures is more convenient than the monocoque type because of the
simple sections of the body-in-white (BIW). In the conceptual or
preliminary design stage, it is important to have good dynamic per-
formances, which are represented as � rst torsion and � rst bending
modes. In the initial design, the space frame has the � rst torsion
mode of 32.01 Hz and the � rst bending mode of 38.94 Hz. These
performancesare utilized as constrainedbounds in Eq. (15). There-
fore, the formulationfor deterministicoptimizationis representedas

minimize weight.w1; h1; t1; : : : ; w6; h6; t6/

subject to f1.� rst torsion/ ¸ 32:01 Hz

f2.� rst bending/ ¸ 38:94 Hz (15)

Candidate values are

t1.£10¡3 m/ D [4:8; 5:0; 5:2; 5:4; 5:6]

ti .£10¡3 m/ D [2:8; 3:0; 3:2; 3:4; 3:6]; i D 2; : : : ; 6

The design variables in the continuous design space are selected
as widths, heights, and thicknesses of sections of the pillars and
side members. The section views of the members are equal to those
of the one-bay, two-story frame as shown in Fig. 5. The members
with the design variables are shown as boldface lines in Fig. 6.
The thicknesses of the frame should be selected from the standard
productsof discretedesign variables.Thus, the thicknessesare used
for design variables,and their discretevalues around the continuous
optimum are listed in Table 8.

Table 8 Levels of design variables (space frame)

Design variable

Array Level t1 t2 t3 t4 t5 t6

Inner (£10¡3 m) 1 5.4 3.4 3.4 3.4 3.4 3.4
2 5.2 3.2 3.2 3.2 3.2 3.2
3 5.0 3.0 3.0 3.0 3.0 3.0

Outer (i D 1, 6) 1 ti C .ti £ 0:1/
2 ti
3 ti ¡ .ti £ 0:1/

Fig. 6 Stick model of space frame in an electrical vehicle.

The tolerancesof the design variables are set to have 10% of the
design variables (DVs). In the same manner as with the one-bay,
two-story frame, L18.21 £ 37/ orthogonal arrays are utilized as the
inner and outer arrays. In this design, Eq. (11) is composed into the
standard deviation of BIW’s weight and the penalty function of two
dominant frequencies.

With the scale factor (SF) of 0.1, the optimum levels are deter-
mined as [t1 , t2 , t3 , t4 , t5, t6]T D [level 1, level 1, level 1, level 1,
level 3, level 2]T . This robust optimum has 32.12 Hz of the � rst fre-
quency and 38.96 Hz of the second frequency.It is determined from
the sixth ranked estimator for the characteristicfunctions.The stan-
dard deviations of the robust optimum and the rounded-up values
are 0.112 and 0.105, respectively. It may seem that the rounded-up
values have better robustness. However, the � rst constraint is vio-
lated, though its standarddeviation is smaller than that of the robust
optimum. Thus, the design determined from the rounded-up values
is useless. This phenomenon is frequently found in the rounded-up
design.

V. Conclusions
The following conclusionscan be made from this study:
1) The discrete design is developed as a postprocess of con-

strained optimization in the continuousdesign space. It is used as a
postprocess to increase the feasibility chance. However, the devel-
oped method can be used from the beginning without conventional
optimization. Through the robust design procedure, a structure is
designed to be less sensitive to the variationsof DVs enhancing the
feasibilityof the constraint function.The constraint feasibility is in-
vestigated by ranking the estimators of the characteristic function.
This method can be applied with low computing cost, whereas the
existing discrete optimizations are excellent but expensive.

2) By de� nition of the characteristic function, the constrained
optimization problems are solved by the parameter design of the
Taguchi method.19 The SNR of the Taguchi method is replaced by
the characteristic function composed of the standard deviation and
the penalty function. The standard deviation denotes the robustness
of the object function. On the contrary, the penalty function rep-
resents the robustness of constraint functions. In the characteristic
function, the reasonable SF prevents an excessive design and re-
duces the function calculations for investigating the feasibility of
the constraints.

3) Orthogonal arrays from the experimental design are adopted
successfully in the discrete design of structures. Most structural
problems have interactions between the DVs, though their effects
are not generally predicted.Thus, for the design problem with more
than three DVs and three levels, it is strongly recommended that
special orthogonal arrays such as L18.21 £ 37/ and L36.211 £ 312/
be selected so that the effects of interactions are evenly distributed
among the columns. When a strong interaction exists, it should be
considered in the design process. In future studies, the interaction
of the structural characteristicsmust be investigated,and structural
design must use the interaction.
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